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Abstract. We have calculated the exponent Os governing the growth of the projected area 
of the three-dimensional self-avoiding polygons in a plane. Our series result suggests that 
Os < 2vs,,,  where vSAp is the correlation length exponent of the three-dimensional self- 
avoiding polygons. 

The self-avoiding walk (SAW) has been the subject of extensive studies. Much work 
has been focused on the size of the SAW and the size of the self-avoiding polygons 
(SAP). The size of the SAW is characterized by the exponent vSAW which relates the 
mean square end-to-end distance p ( n )  of the n-step SAW as follows: 

p ( n ) -  n * ' s ~ w .  (1 )  

The size of SAP can be defined through the mean square radius of gyration of the 
n-step SAP in similar fashion to (1). It is generally believed that the size exponent, v, 
for SAP is the same as that for SAW. Previous series analyses [ l ,  21 on an FCC lattice 
and Monte Carlo methods [3,4] in three dimensions yield a larger exponent for SAP 

than for SAW. Recently, Privman and Rudnick [5] and Enting and Guttman [6,7] 
studied SAP in two dimensions using the series analysis. Their results are in good 
agreement with the theoretical expectation vSAp = vSAW. Most recently, there have been 
interests [%lo]  in the area of the SAP in two dimensions. The theoretical analysis of 
Duplantier [ lo]  shows that Os = 2vSAw in two dimensions. In this paper, we study the 
projected area of three-dimensional SAP in a plane which is defined as follows: 

s n =  J J  i . d s = f , + d i  (2) 

where V x A = 2 Setting A =(Re I;)y* (where R is the position vector), we obtain 

From the dimension of the area of the SAP, we expect the exponent for the area to be 
equal to that of the SAP multiplied by two. We have calculated the series up to 18 
bonds for the projected area of the SAP on a cubic lattice in the x - y  plane. We found 
that Os < 2vSAp. However, it should be noted that the area and the mean square radius 
of gyration are essentially different quantities. This will be clear when we consider 
clusters with no free ends. Then the summation in (3) should range from I = 1 to 1 = m, 
where 1 = 1, 2 , .  . . , m denote the exterior boundary sites of the clusters with no free 
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ends. Therefore, S ,  is more like a surface quantity. We also note that S, is a global 
quantity in the sense that one has to specify the exterior site before calculating S,,. 

Assuming that 

where C ( n )  is the number of the n-step SAP, 7, denotes all of the n-step SAP, and Os 
is the exponent of interest. 

The series coefficients are listed in table 1. We have also listed p 3 ( n ) ,  the series of 
the radius of gyration for SAP on the cubic lattice. The calculations took about 30 
hours of CPU time on a Masscomp 5700. We analysed the series using the Pad6 
approximant and the differential Pad6 approximant [ 113. Specifically, we have analysed 
x1 and x2 defined as 

X' = 1 S,( n ) K - I K - 1 I - %- I 
n 

Since the pole is exactly one, the exponent (residue) can be read off from the 
pole-residue plot. For x1 and x2 we obtained Os = 1.026*0.007 and 2 v s A p =  
1.206 f 0.019, respectively. The value vSAp is consistent with vSAW = 0.592 f 0.002 [ 12, 131 
within the error bar. The value of Os is smaller than 2 v S A p .  This may be due to the 
shortness of the series. 

Table 1. The coefficients of the series, where C 3 ( n )  is the number of n-step SAP in three 
dimensions, S , ( n )  is the corresponding area projected in the x - y  plane, and p 3 ( n )  is the 
mean square radius of gyration. 

4 3 
6 22 
8 206 

10 2 361 
12 30 390 
14 418 842 
16 6 088 162 
18 92 263 998 

~ 

1 
16 

230 
3 526 

56 593 
937 389 

15 943 435 
217 324 490 

1.500 
16.833 

225.375 
3 371.465 

53 847.619 
891 873.995 

15 199 341.398 
265 012 864.303 

For the SAP, this exponent, Os, is also related to the exponent corresponding to the 
diamagnetic susceptibility of the superconducting rings. The Hamiltonian of this system 
is defined as 

H = - Jij COS( 4i - 4j - A , )  (7)  
( i d  

where 
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where A is the vector potential and @,= h c / 2 e  is an elementary flux quantum. It is 
readily shown that the total diamagnetic susceptibility, x, of a polygon is [14, 151 
x - S 2 /  P, where P is the perimeter of the polygon. Assuming that x(  n )  for the n-step 
SAP obeys the following scaling form: 

Now we construct a series where each superconducting polygon is weighted by the 
number of its bonds. Comparing (4) and (9) and using the fact that x = S2/ P, we then 
obtained 4 = 2OS - 1. Hence, 4 ( d  = 2) = 2 since = 3/2 in two dimensions and our 
numerical estimate yields 4(  d = 3) = 1.052 f 0.014. 

In summary, we have calculated the projected area of the three-dimensional SAP 

in a plane. Our result suggests that 65 < 2v,,, in three dimensions. We have also 
estimated the exponent for the diamagnetic susceptibility of the superconducting rings. 
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